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In  this work, we study the interference of two scalars diffusing in homogeneous 
isotropic turbulence. We use the method described by Kaplan & Dinar (1988b) to 
calculate the cross-correlation coefficient p between the concentration fluctuations of 
two sources. The dependence of p on the source separation, shapes and sizes, and its 
time evolution is calculated for different points in space. Results for the case of two 
line sources are compared with data from wind tunnel experiments (Warhaft 1984), 
and seen to be in good agreement. At the centreline p is shown to increase as overlap 
of the two plumes increases. p may be either negative or positive depending on the 
separation between the two sources. 

1. Introduction 
The cross-correlation of two or more scalars, diffusing in a turbulent medium, is of 

great interest from both theoretical and practical points of view. Many physical 
quantities in the atmosphere or in the ocean depend on the fluctuations of two or 
more scalars and their temporal and spatial distribution can be determined only if 
the covariance of these two quantities is known. Examples of such quantities are : the 
radio refractive index which depends on the temperature-humidity covariance, the 
temperature-salinity covariance in the ocean and the mixing of two reactants which 
determines the rate of reaction. 

The theoretical approach to the problem of diffusion in turbulent media is usually 
limited to the prediction of scalar averages and is not normally used to predict higher 
moments of the scalar fluctuations. (See for example Taylor 1921; Hanna 1979; 
Thomson 1986.) Only in recent years with the development of the theory of two- 
particle statistics, has the second moment of the fluctuations become more readily 
calculable (Durbin 1980; Sawford 1983; Sawford & Hunt 1986; Kaplan & Diuar 
1988a, b ) .  Those approaches, when formulated in the one-dimensional case are not 
consistent with the incompressibility constraint and the predicted fluctuation 
distribution is affected by the fluid density fluctuations. I n  order to overcome this 
limitation, the model suggested by Kaplan & Dinar ( 1 9 8 8 ~ )  was extended to the 
three-dimensional case and constrained to fulfil the continuity equation. In the 
present work, we use this three-dimensional model to predict the spatial and 
temporal evolution of the correlation of two scalar fluctuations. The prediction of the 
model is compared with the wind tunnel measurements of Warhaft (1984). 

The outline of the paper is as follows. After a brief description of the three- 
dimensional model, we calculate the cross-correlation p as a function of space and 
time for various sources (shapes and magnitudes), and for different values of their 
separation. Finally, results for the two line sources are compared to the wind tunnel 
experiments of Warhaft (1984), and to field experiments of Sawford, Frost & Allan 
(1985). 
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2. Description of the model 
2.1. Basic equations 

The three-dimensional model suggested by Kaplan & Dinar (1988b) to describe the 
two-particle statistics in homogeneous isotropic turbulence is based on the 
Lagrangian statistics approach. It is assumed that the motion of the two particles in 
the field is described by the following equations : 

dri 
- = U i ( t )  (i = 1,2), dt 

ui ( t  + At) = RL(At)  vi(t) + (1 --Ri(At))iB(r,(t)), 

&(At) = exp ( -  At/TL).  

(2.2) 

where RL(At)  is the Lagrangian time correlation function given by 

(2.3) 

TL is the Lagrangian timescale. B(ri) is a spatially correlated white noise. We assume 
that the spatial covariance of the random field O(r) is given by the Eulerian 
covariance function of the turbulence field, C(r i - r j ) ,  i.e. 

<e,cr,, qq)) = c,,c.i-.j, (%P = x, y ,  2). (2.4) 

I n  homogeneous isotropic turbulence the covariance function is determined by its 
projection in a given direction, lets say the X-direction (see Kaplan & Dinar 1988b). 
Given the one-dimension covariance function C,,(X, 0,O) = uEf(X), the covariance 
matrix Cap can be determined : 

C, = a ~ [ - 0 . 5 ~ f ’ ( r ) + G , p ( f ( r ) + 0 . 5 r f ’ ( r ) ) ]  r (2.5) 

The one-dimensional function f(X) is characterized by the Eulerian lengthscale L ,  
and by the Kolomgorov spectra for small X in the inertial subrange. Following 
Durbin (1980), we chose f ( X )  to  be 

The integral Eulerian lengthscale of this function is approximately 0.747LE. The 
covariance matrix Cap described by (2.5) is compatible with incompressibility and 
isotropy of the turbulent medium (see the Appendix). A method of constructing such 
a random field B(r) with covariance given by (2.5) is described in Kaplan & Dinar 
(1988b). Given the covariance matrix C(r t - r j )  and initial conditions, (2.1) and (2.2) 
can be solved and trajectories of the two particles can be calculated. 

2.2. Definition of the concentration Jluctuations at a given point 
We adopted the approach of concentration fluctuations at high PBclet number 
suggested by Durbin (1980, 1982). According to  this definition, the concentration at 
a given point r at time t is given by averaging the instantaneous concentration over 
a small volume V, of order 7 around r,  i.e. 

c(t, t )  = &’, t )  dsr’, 
V, v7 

where (?(r,t) is the instantaneous point concentration and 9 is the Kolmogorov 
lengthscale. Using this definition, we take into account smearing by molecular 



Interference of passive scalars in homogeneous isotropic turbulence 275 

action. The concentration fluctuations are determined primarily by the dynamics of 
large eddies and eddies in the inertial sub-range. 

2.3. Calculation of the moments of JEuctuations 

It was proved by Egbert & Baker (1984) that in an incompressible flow, the joint 
probability PN(r?.. . rR ; 0 ; rl . . . rN, t )  for N particles located a t  ry . . . rk a t  time t = 0 to 
be at locations rl . . . rN respectively a t  time t (forward diffusion), is equal to the joint 
probability PN(rl .. . rN ; t ; r! . . . rR ; 0 ;) that N particles which are a t  rl . . . rN a t  time t 
came from locations r! . . . rg respectively at  time t = 0 (reversed diffusion). Using this 
theorem, the moments of concentration distribution can be calculated in terms of the 
reversed diffusion (see Egbert & Baker 1984). The Nth moment is given by 

= JJhN(r,r, ... r,t;r!,r:, ... r'&,O)S(r!)S(r:) ... S(r0,)d3r! ... d3rR, (2.8) 

where S(r) is the source distribution function. Denote by S,  a source distribution 
function centred a t  rA and by S, a source distribution function centred at r,. The 
second moment of concentration resulting from those two different sources is given 
by 

CAB = Jh2(r:, r:, 0;  r, r, t )  S,(ry) S,(r:) d3r! d3r; 

= /k2(r, r, t ; r!, r:, 0) SA(r;) S,(r:) d3r: d3r:. (2.9) 

The integrals (2.8) and (2.9) are calculated using a Monte-Carlo method. In  order to 
cblculate P(rl, r2 ; t ; r!, r: ; 0) one should follow the trajectories of particles backward 
in time. In stationary turbulence, this is equivalent to solving (2.1) and (2.2) forward 
in time (see Durbin 1980). 

We start with a particle pair near the point r separated by a very small distance 
Ar.  Solving (2.1) and (2.2), we calculate their locations r;, r: respectively, after 
time t. Then we assign to particle 1 ,  the source concentration S,(r;), and to particle 2 
the concentration S,(r:). Repeating this procedure M times, and assuming S,(r) = 
S(r-rA), S,(r) = S(r-rB), the integrals for the moments can be approximated by 

(2.10) 

Ma", Mg)  are the averaged concentrations a t  point t contributed by the sources 
located at r,, r,, respectively. And 

(2.11) 

where Mg) ,  Mg) are the second moments of the concentration fluctuations at point 
r, contributed by the sources located a t  r,, r,, respectively. 
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GAB is the second moment of the concentration contributed by the sources located 
at  rA and a t  rB, calculated a t  point r .  

The variances of concentration fluctuations contributed by source A and B are V,, 
VE respectively : 

j7 - J g p  - [ J g y ] 2  VA = Ma"' - [Jgyy ,  E -  

_ _  

(2.13) 

With these moments, the correlation between concentration from sources A and B a t  
point r is calculated : C - J g 5 ) @ 2 )  

A B  A 

(vA vB)t ' 
P =  

The fluctuation intensities sA ,  sB are 

(2.14) 

(2.15) 

3. Results and discussion 
Figure 1 shows the evolution in time of p a t  the centreline between the two sources 

(plane source, line source and sphere source) for various values of d,  the spacing of 
the sources. The source shape used is of a Gaussian distribution with CT = O.a,. The 
time t is scaled by the Lagrangian timescale TL, and d is scaled by the Eulerian 
lengthscale L,. Figure 2 shows the dependence of p on the spacing between the 
sources, for different values oft. The values of p a t  large times are less accurate owing 
to statistical noise and the wiggles that appear in the curves are result of this. 

On the basis of physical intuition, one expects the time evolution of the 
correlation between two sources to be as follows: a t  small times, when the cloud 
width is very small compared to the distance between the two sources, neither cloud 
is present for most of the time a t  the detector, then p is small. Later in time, when 
the cloud grows and its width is of the order of magnitude of the space between the 
two sources, p becomes negative. This can be understood by looking at  figure 3. In 
those realizations where the cloud moves toward source A ,  the concentrativn 
contributed by source A a t  the centreline is small while that contributed by source 
B increases, and vice versa where the cloud moves toward B. When the time is large 
enough so that the cloud widths are larger than the spacing between the two sources, 
the two clouds are well mixed and the correlation between their concentrations tends 
to  1. This description suggests that the time evolution of the correlation can be scaled 
and is a unique function of the ratio a(t/T,)/d, where a(t/T,) is given in (4.2) and d 
is the space between the two sources. This scaling is presented in figure 4 for the three 
sources. Results indicate that p is a unique function of a(t/T,)/d. The behaviour of 
the correlation as function of time, as described above, is similar for the three sources 
(figure 4) : spherical source, line source and plane source. The minimum is lowest in 
the case of a plane source, where the motion of the plume has only one degree of 
freedom. I n  figure 5 (solid line), we present the dependence of the correlation on the 
cross-wind direction. It can be seen that the correlation increases with the distance 
from the centreline. This behaviour can be understood by looking a t  figure 3. If we 
look at a line far from the centreline (for example, the dotted line E in the figure), 
we find that a t  this point, the two concentrations increase or decrease together as the 
plumes move. 
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FIGURE 1 (a, b) .  For caption see next page. 
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FIGURE 1. Evolution in time of p at the centreline between two sources in a turbulent flow for 
various values of the spacing between the sources. (a) Plane sources; ( b )  line sources; ( G )  sphere 
sources. 
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FIQURE 2. Dependence of p on the spacing between the sources for different time values. 

(a) Plane sources; ( b )  line sources; (c) sphere sources. 

4. Comparison with experiments 
Experiments that give information on p and its dependence on various parameters 

have been performed recently (Sawford et al. 1985 ; Warhaft 1984). The more detailed 
information is given in the experiment of Warhaft (1984), which studies the 
interference of passive thermal fields produced by two line sources in a decaying grid 
turbulence. The evolution of p in time and its dependence on the source spacing, as 
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FIQURE 4(a). For caption see facing page. 

observed in this experiment, is qualitatively the same as described by our model. The 
difficulty in comparing the model to the experiment quantitatively is because the 
theoretical model describes stationary turbulence while the measurements are taken 
in a decaying turbulent field. In  order to compare Warhaft's results to our model, we 
define an equivalent Lagrangian timescale TL as the averaged Lagrangian timescale 
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4 l I T J l d  

over the life time of the cloud. The relation between TL, uv and the integral Eulerian 
lengthscale L ,  are assumed to be TLuV/LE = 0.6 (see Hanna 1981). 

where X,, is the source location, X is the downwind distance from the grid, LE(t) is 
the turbulence scale as a function of distance from the grid and a&) is the turbulence 
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FIGURE 5. The dependence of the correlation p on the cross-wind direction, for different times and 
for different values of the spacing between the sources: -, our model; ----, Warhaft's 
experimental values. 
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FIGURE 7. The dependence of the cloud width on the distance from the sources: -, model 
prediction for stationary turbulence; ----, Warhaft’s results. (Lengths are scaled by M, the grid 
parameter in Warhaft’s experiments.) 

intensity. Using this definition for TL, we rescale Warhaft’s measurements and 
compare them to our results, figure 6. We see that the experimental curves are in 
good agreement with the theoretical ones. We also compared Warhaft’s results for 
the cloud width evolution with the theoretical prediction for the stationary 
turbulence (see Kaplan k Dinar 1988b; Taylor 1921). The cloud width Yt is defined 
as the distance from the cloud centre a t  which the concentration is half the maximum 
concentration : 

U 
= 1.18- = 2/2 x 0.6 (exp ( - t/TL) + t/TL - 1);. 

Yt 
LE LE 
- 

This comparison is presented in figure 7 .  
Another quantity that is compared to the experimental results is the model 

prediction of the fluctuations intensity 5 for a single source (formula (2.15)). The 
evolution in time of s is presented in figure 8 and one can see that the agreement 
is good. In  the range for which the calculations were carried out, the fluctuation 
intensity decreases with time. 

Figure 5 shows the cross-wind dependence of the experimental results versus the 
theoretical ones. (The experimental results are indicated by dashed lines.) Again, 
these results are in agreement with Warhaft’s. 

10 FLM 203 
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FIGURE 8. Time evolution of the fluctuation intensity for a single source. -. model results; 
A, 0, + , Warhaft’s experiments. 

Less accurate results from field experiments are available in the work of Sawford 
et al. (1985). These experiments were carried out in inhomogeneous turbulence and 
no information is given on the turbulence scale. Qualitatively the correlation p 
evolution in time and dependence on source spacing is similar to that predicted by 
our model. 

5. Summary 
In  this work, we have presented a method for calculating the cross-correlation of 

two passive scalars released in an isotropic homogeneous turbulence. The method 
was compared with experimental results and found to be in good agreement. It was 
found that the behaviour of the correlation depends on the Eulerian lengthscale and 
on the turbulence intensity. Results were presented in non-dimensional form, which 
enables us to use them with other values of the parameters. Extension of the model 
to include more than two sources is in progress. 

Appendix 
The stochastic process described by (2.1) and (2.2) is compatible with in- 

compressible turbulent flow. The proof is carried out in two steps. First we shall 
prove (Lemma 1) that the stochastic process (2.1) and (2.2) describes an Eulerian 
distribution function of the velocity field which has a covariance matrix Kafl(lri - r,l) 
which fulfills the condition 
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(The summation convention is used in the appendix unless the 'E' sign is written 
explicitly.) Then we shall prove (Lemma 2) that a turbulent field is incompressible 
if and only if its Eulerian distribution function has a covariance Kap(ri,r,) which 
satisfies (A 1) .  

LEMMA 1. The covariance Kap (rt ,  ri) of the Eulerian distribution function g E  described 
by the stochastic process (2.1) and (2.2) fuljflls (A  I ) .  

Proof. It was proved by Thomson (1987) that the Eulerian distribution function 
of the field should be a solution of the equation 

The equation for the moment-generating function of gE with respect to velocities 
which we denote by g E ( O l . .  . O N ) ,  is 

Substituting 6 = 0 in (A 3) and using the fact that  g, is a distribution function and 
therefore its zero moment is 1,  then 

This means that the divergence of the first moment of gE is zero. On the other hand 
the stochastic process described by (2.1) and (2.2) using (2.3) and (2.5) is isotropic and 
therefore, the first moment of g E  must be proportional to  ri (see Batchelor 1956, 
p. 42). From this we can deduce that the first moment of gE must be zero. 

By taking derivatives of (A 3) with respect to Q at the point 8 = 0 one gets 

Since the first moments of gE are zero, it follows from (A 4) that 

Therefore (A 1) holds and the Lemma is proved. 

Kap(rt, r,) which futfills the condition 
LEMMA 2 (a) .  If the Eulerian distribution function of velocities has a covariance 

then the velocity field describes an  incompressible jlow. 

flow which has a non-zero divergence a t  some point rf 
Proof. Suppose the above claim is not correct, then there exists a realization of the 

V . d k ) ( r i )  =f= 0. (A 7) 

10-2 
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Then by multiplying the left hand side of (A 7 )  by dk)D(rj) for (rd 9 r,) and averaging 
over all realizations, we get 

Taking the divergence at point r,, we have 
r M  

Owing to the continuity of the velocity and its derivatives, it follows for (rj  + ri)  
i M  

which contradicts (A 7). 

LEMMA 2 (b). If the flow is incompressible then ( A  6) holds for incompressible $ow : 

v - u(k)(r t )  = 0 (A 11) 

at each point for every realization k of the field. 

Multiplying (A 11) by @(r,), rj 4 ri and averaging over all realizations, we obtain 

(V .v ( r , )@(r j ) )  = 0. (A 12) 

Then by changing the order of averaging and differentiation we find 

R E F E R E N C E S  

BATCHELOR, G. K. 1956 The Theory of Homogeneous Turbulence. Cambridge University Press. 
DURBIN, P. A. 1980 A stochastic model of two particle dispersion and concentration fluctuations 

in homogeneous turbulence. J .  Fluid Mech. 100, 279-302. 
DUHBIN, P. A. 1982 Validity of the Lagrangian theory of concentration variance in turbulent 

dispersion. Bull. Am. Phys. SOC. 27, 1180. 
EQBERT, G. D. & BAKER, M. B. 1984 Comments on the effect of Gaussian particle-pair distribution 

function in statistical theory of concentration fluctuations in homogeneous turbulence. B. L. 
Sawford (1983) 109, 33S335; &. J .  R. Met. SOC. 110, 1195-1199. 

HANNA, S. R. 1979 Some statistics of Lagrangian and Eulerian wind fluctuation. J .  Appl.  Met. 18, 
51S525. 

HANNA, S. R. 1981 Turbulent energy and Lagrangian time scales in the planetary boundary layer. 
In 5th Symposium on Turbulence, Diffusion, and Air  Pollution, pp. 61-62. AMS. 

KAPLAN, H. & DINAR, N. 1988a A stochastic model for dispersion and concentration distribution 
in homogeneous turbulence. J .  Fluid Mech. 190, 121-140. 

KAPLAN, H.  & DINAR, N. 1988 b A three-dimensional stochastic model for concentration fluctuation 
statistics in isotropic homogeneous turbulence. J .  Comput. Phys. 79, 31 7-335. 

SAWFORD, B. L. 1983 The effect of Gaussian particle pair distribution function in the statistical 
theory of concentration fluctuations in homogeneous turbulence. Q. J .  R. Met. SOC. 109, 
339-354. 

SAWFORD, B. L., FROST, C. C. & ALLAN, T. C. 1985 Atmospheric boundary-layer measurements of 
concentration statistics from isolated and multiple sources. Boundary-Layer Met. 31, 249-268. 

SAWFORD, B. L. & HUNT, J. C. R. 1986 Effect of turbulence structure molecular diffusion and 
source size on Auctuations of concentration in homogeneous turbulence. J .  Fluid Mech. 165, 
374-400. 



Interference of passive scalars in homogeneous isotropic turbulence 287 

TAYLOR, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. SOC. (2), 20, 19&211. 
THOMSON, D. J. 1986 A random walk model of dispersion in turbulent flow and its application to 

THOMSON, D. J. 1987 Criteria for the selection of stochastic models of particles trajectories in 

WARHAFT, Z. 1984 The interference of thermal fields for line sources in grid turbulence. J .  FZuid 

dispersion in a valley. &. J .  R .  Met. SOC. 112, 511-530. 

turbulent flows. J .  Fluid Mech. 180, 529-556. 

Mech. 144, 363-381. 




